Biofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling

نویسندگان

  • Malgorzata Peszynska
  • Anna Trykozko
  • Gabriel Iltis
  • Steffen Schlueter
  • Dorthe Wildenschild
چکیده

Biofilm growth changes many physical properties of porous media such as porosity, permeability and mass transport parameters. The growth depends on various environmental conditions, and in particular, on flow rates. Modeling the evolution of such properties is difficult both at the porescale where the phase morphology can be distinguished, as well as during upscaling to the corescale effective properties. Experimental data on biofilm growth is also limited because its collection can interfere with the growth, while imaging itself presents challenges. In this paper we combine insight from imaging, experiments, and numerical simulations and visualization. The experimental dataset is based on glass beads domain inoculated by biomass which is subjected to various flow conditions promoting the growth of biomass and the appearance of a biofilm phase. The domain is imaged and the imaging data is used directly by a computational model for flow and transport. The results of the computational flow model are upscaled to produce conductivities which compare well with the experimentally obtained hydraulic properties of the medium. The flow model is also coupled to a newly developed biomass–nutrient growth model, and the model reproduces morphologies qualitatively similar to those observed in the experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forchheimer Law in Computational and Experimental Studies of Flow through Porous Media at Porescale and Mesoscale

We propose an algorithm for upscaling of flow with inertia within a multiscale framework ranging from porescale (microscale) to lab scale (mesoscale). In particular, we solve Navier-Stokes equations over complex pore geometries and average their solutions to get flow parameters at mesoscale. For periodic geometries, this is exactly the idea of homogenization. As concerns averaging, we follow th...

متن کامل

Computational Upscaling of Inertia Effects from Porescale to Mesoscale

We propose algorithms for computational upscaling of flow from porescale (microscale) to lab scale (mesoscale). In particular, we solve Navier-Stokes equations in complex pore geometries and average their solutions to derive properties of flow relevant at lab scale such as permeability and inertia coefficients. We discuss two variants of traditional discretizations: a simple algorithm which wor...

متن کامل

Coupled cellular models for biofilm growth and hydrodynamic flow in a pipe

In this paper we present a hybrid model for coupling of biofilm growth and hydrodynamic flow in a pipe. A cellular automata model, which is a discrete model, is used to describe the growth of biofilm. This stochastic discrete model is coupled with a continuum model of the fluid flow in a pipe. The potential applications of the proposed model are the flow in drinking water pipe systems or in aqu...

متن کامل

Imaging biofilm in porous media using X-ray computed microtomography.

In this study, a new technique for three-dimensional imaging of biofilm within porous media using X-ray computed microtomography is presented. Due to the similarity in X-ray absorption coefficients for the porous media (plastic), biofilm and aqueous phase, an X-ray contrast agent is required to image biofilm within the experimental matrix using X-ray computed tomography. The presented technique...

متن کامل

Three-Dimensional Simulations of Biofilm Growth in Porous Media

Biofilm growth occurs in a variety of random porous media in a range of industrial processes; prediction of its growth and subsequent influence on hydrodynamics is hence desirable. In this study, we present the first numerical 3D pore-scale model of biofilm growth in porous media, based on a lattice Boltzmann simulation platform complemented with an individual-based biofilm model (IbM). We use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015